3.7: Heisenberg's Uncertainty Principle (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    15874
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Consider a real-space Hermitian operator, \(O(x)\). A straightforward generalization of Equation ([e3.55a]) yields \[\label{e3.84} \int_{-\infty}^\infty \psi_1^{\ast}\,(O\,\psi_2)\,dx = \int_{-\infty}^\infty (O\,\psi_1)^\ast\,\psi_2\,dx,\] where \(\psi_1(x)\) and \(\psi_2(x)\) are general functions.

    Let \(f=(A-\langle A\rangle)\,\psi\), where \(A(x)\) is an Hermitian operator, and \(\psi(x)\) a general wavefunction. We have \[\int_{-\infty}^\infty |f|^{\,2}\,dx= \int_{-\infty}^\infty f^\ast\,f\,dx = \int_{-\infty}^\infty[(A-\langle A\rangle)\,\psi]^{\,\ast}\,[(A-\langle A\rangle)\,\psi]\,dx.\] Making use of Equation ([e3.84]), we obtain \[\label{e3.86} \int_{-\infty}^\infty |f|^{\,2}\,dx=\int_{-\infty}^\infty \psi^\ast\,(A-\langle A \rangle)^{\,2}\,\psi\,dx = \sigma_A^{\,2},\] where \(\sigma_A^{\,2}\) is the variance of \(A\). [See Equation ([e3.24a]).] q4 Similarly, if \(g=(B-\langle B\rangle)\,\psi\), where \(B\) is a second Hermitian operator, then \[\int_{-\infty}^\infty |g|^{\,2}\,dx = \sigma_B^{\,2},\]

    Now, there is a standard result in mathematics, known as the Schwartz inequality , which states that \[\left|\int_a^b\,f^\ast(x)\,g(x)\,dx\right|^{\,2}\leq \int_a^b|f(x)|^{\,2}\,dx\,\int_a^b |g(x)|^{\,2}\,dx,\] where \(f\) and \(g\) are two general functions. Furthermore, if \(z\) is a complex number then \[\label{e3.89} |z|^{\,2} = [{\rm Re}(z)]^{\,2} + [{\rm Im}(z)]^{\,2} \geq [{\rm Im}(z)]^{\,2} = \left[\frac{1}{2\,{\rm i}}\,(z-z^\ast)\right]^{\,2}.\] Hence, if \(z=\int_{-\infty}^\infty f^\ast\,g\,dx\) then Equations ([e3.86])–([e3.89]) yield \[\label{e3.90} \sigma_A^{\,2}\,\sigma_B^{\,2} \geq \left[\frac{1}{2\,{\rm i}}\,(z-z^\ast)\right]^{\,2}.\] However, \[z = \int_{-\infty}^{\infty} [(A-\langle A\rangle)\,\psi]^{\,\ast}\,[(B-\langle B\rangle)\,\psi]\,dx = \int_{-\infty}^{\infty} \psi^\ast\,(A-\langle A\rangle)\,(B-\langle B\rangle)\,\psi\,dx,\] where use has been made of Equation ([e3.84]). The previous equation reduces to \[z =\int_{-\infty}^\infty \psi^\ast\,A\,B\,\psi\,dx -\langle A\rangle\,\langle B\rangle.\] Furthermore, it is easily demonstrated that \[z ^\ast=\int_{-\infty}^\infty \psi^\ast\,B\,A\,\psi\,dx -\langle A\rangle\,\langle B\rangle.\] Hence, Equation ([e3.90]) gives \[\label{e3.94} \sigma_A^{\,2}\,\sigma_B^{\,2} \geq \left(\frac{1}{2\,{\rm i}}\langle[A,B]\rangle\right)^{\,2},\] where \[[A,B] \equiv A\,B-B\,A.\]

    Equation ([e3.94]) is the general form of Heisenberg’s uncertainty principle in quantum mechanics. It states that if two dynamical variables are represented by the two Hermitian operators \(A\) and \(B\), and these operators do not commute (i.e., \(A\,B\neq B\,A\)), then it is impossible to simultaneously (exactly) measure the two variables. Instead, the product of the variances in the measurements is always greater than some critical value, which depends on the extent to which the two operators do not commute.

    For instance, displacement and momentum are represented (in real-space) by the operators \(x\) and \(p\equiv-{\rm i}\,\hbar\,\partial/\partial x\), respectively. Now, it is easily demonstrated that \[[x,p] = {\rm i}\,\hbar.\] Thus, \[\sigma_x\,\sigma_p\geq \frac{\hbar}{2},\] which can be recognized as the standard displacement-momentum uncertainty principle (see Section [sun]). It turns out that the minimum uncertainty (i.e., \(\sigma_x\,\sigma_p=\hbar/2\)) is only achieved by Gaussian wave-packets (see Section [s2.9]): that is,

    \begin{equation}\psi(x)=\frac{\mathrm{e}^{+i p_{0} x / \hbar}}{\left(2 \pi \sigma_{x}^{2}\right)^{1 / 4}} \mathrm{e}^{-\left(x-x_{0}\right)^{2} / 4 \sigma_{x}^{2}}\end{equation}

    \begin{equation}\phi(p)=\frac{\mathrm{e}^{-\mathrm{i} p x_{0} / \hbar}}{\left(2 \pi \sigma_{p}^{2}\right)^{1 / 4}} \mathrm{e}^{-\left(p-p_{0}\right)^{2} / 4 \sigma_{p}^{2}}\end{equation}

    where \(\phi(p)\) is the momentum-space equivalent of \(\psi(x)\).

    Energy and time are represented by the operators \(H\equiv{\rm i}\,\hbar\,\partial/\partial t\) and \(t\), respectively. These operators do not commute, indicating that energy and time cannot be measured simultaneously. In fact, \[[H,t] = {\rm i}\,\hbar,\] so \[\sigma_E\,\sigma_t\geq \frac{\hbar}{2}.\] This can be written, somewhat less exactly, as

    \(\begin{equation}\Delta E \Delta t \gtrsim \hbar\end{equation}\) are the uncertainties in energy and time, respectively. The previous expression is generally known as the energy-time uncertainty principle.

    For instance, suppose that a particle passes some fixed point on the \(x\)-axis. Because the particle is, in reality, an extended wave-packet, it takes a certain amount of time, \({\mit\Delta}t\), for the particle to pass. Thus, there is an uncertainty, \({\mit\Delta}t\), in the arrival time of the particle. Moreover, because \(E=\hbar\,\omega\), the only wavefunctions that have unique energies are those with unique frequencies: that is, plane-waves. Because a wave-packet of finite extent is made up of a combination of plane-waves of different wavenumbers, and, hence, different frequencies, there will be an uncertainty \({\mit\Delta}E\) in the particle’s energy that is proportional to the range of frequencies of the plane-waves making up the wave-packet. The more compact the wave-packet (and, hence, the smaller \({\mit\Delta}t\)), the larger the range of frequencies of the constituent plane-waves (and, hence, the large \({\mit\Delta}E\)), and vice versa.

    To be more exact, if \(\psi(t)\) is the wavefunction measured at the fixed point as a function of time then we can write

    \begin{equation}\psi(t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \chi(E) \mathrm{e}^{-i E t / \hbar} d E\end{equation}

    In other words, we can express \(\psi(t)\) as a linear combination of plane-waves of definite energy \(E\). Here, \(\chi(E)\) is the complex amplitude of plane-waves of energy \(E\) in this combination.

    By Fourier’s theorem, we also have

    \begin{equation}\chi(E)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \psi(t) \mathrm{e}^{+i E t / \hbar} d t\end{equation}

    For instance, if \(\psi(t)\) is a Gaussian then it is easily shown that \(\chi(E)\) is also a Gaussian: that is,

    \begin{equation}\psi(t)=\frac{\mathrm{e}^{-i E_{0} t / \hbar}}{\left(2 \pi \sigma_{t}^{2}\right)^{1 / 4}} \mathrm{e}^{-\left(t-t_{0}\right)^{2} / 4 \sigma_{t}^{2}}\end{equation}

    \begin{equation}\chi(E)=\frac{\mathrm{e}^{+i E t_{0} / \hbar}}{\left(2 \pi \sigma_{E}^{2}\right)^{1 / 4}} \mathrm{e}^{-\left(E-E_{0}\right)^{2} / 4 \sigma_{E}^{2}}\end{equation}

    where \(\sigma_E\,\sigma_t=\hbar/2\). As before, Gaussian wave-packets satisfy the minimum uncertainty principle \(\sigma_E\,\sigma_t=\hbar/2\). Conversely, non-Gaussian wave-packets are characterized by \(\sigma_E\,\sigma_t>\hbar/2\).

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    3.7: Heisenberg's Uncertainty Principle (2024)

    References

    Top Articles
    Ähnliche DIY Lautsprecher wie Calpamos, Pi, Econowave, etc., Lautsprecher
    Nc Scratch Off Remaining
    Refinery29 Horoscopes
    Craigslist The Big Island
    Nancy Caroline (Kindley) Walker - Goodwin Funeral Home
    Ap Psychology Unit 8 Vocab
    Equinox Summit Class Schedule
    Britley Ritz - K99.1FM
    Rick Harrison Daughter Ciana
    19 Dollar Fortnite Card Copypasta
    Fy23 Ssg Evaluation Board Fully Qualified List
    'Kendall Jenner of Bodybuilding' Vladislava Galagan Shares Her Best Fitness Advice For Women – Fitness Volt
    Violent Night Showtimes Near The Grand 16 - Lafayette
    35 Best Anime Waifus Of All Time: The Ultimate Ranking – FandomSpot
    352-730-1982
    Often Fvded Barber Lounge
    Chittenden County Family Court Schedule
    Nyu Paralegal Program
    Neos Urgent Care Springfield Ma
    Junior&#039;s Barber Shop &amp; Co &#8212; Jupiter
    Rochester Ny Missed Connections
    Abby's Caribbean Cafe
    South Bend Tribune Online
    OC IDEAS TO DRAW [80+ IDEAS!] ✍🏼 | Spin the Wheel - Random Picker
    Maven 5X30 Scope
    Taylorsince1909
    Craigslist Free Charlottesville Va
    Qcp Lpsg
    Alexandria Van Starrenburg
    Quarante ans après avoir arrêté, puis changé le temps
    Academy Sports Meridian Ms
    David Mayries
    Kino am Raschplatz - Vorschau
    How To Create A Top Uber Boss Killer In POE 3.25 League?
    Best Jumpshot
    Adding Performance to Harley Davidson & Motorcycles is Easy with K&N
    If You Love FX’s 'Shogun,' Here Are 10 More Samurai Things To Check Out
    Middletown Pa Craigslist
    Myapps Tesla Ultipro Sign In
    South Dakota Bhr
    Amazing Lash Bay Colony
    Toxic Mold Attorney Near Me How To File A Toxic Mold Lawsuit Sample Complaint In Apartment Mold Case
    Rocky Aur Rani Kii Prem Kahaani - Movie Reviews
    El Pulpo Auto Parts Houston
    Pkittens
    Costco Gas Price Pembroke Pines
    Level A Sarasota
    German police arrest 25 suspects in plot to overthrow state – DW – 12/07/2022
    18 Awesome Things to do in Fort Walton Beach Florida 2024 - The Wanderlust Within
    Backrooms Level 478
    Opsahl Kostel Funeral Home & Crematory Yankton
    Texas State Final Grades
    Latest Posts
    Article information

    Author: Velia Krajcik

    Last Updated:

    Views: 6370

    Rating: 4.3 / 5 (74 voted)

    Reviews: 81% of readers found this page helpful

    Author information

    Name: Velia Krajcik

    Birthday: 1996-07-27

    Address: 520 Balistreri Mount, South Armand, OR 60528

    Phone: +466880739437

    Job: Future Retail Associate

    Hobby: Polo, Scouting, Worldbuilding, Cosplaying, Photography, Rowing, Nordic skating

    Introduction: My name is Velia Krajcik, I am a handsome, clean, lucky, gleaming, magnificent, proud, glorious person who loves writing and wants to share my knowledge and understanding with you.